Dynamic and coordinated regulation of KEAP1-NRF2-ARE and p53/p21 signaling pathways is associated with acetaminophen injury responsive liver regeneration.
نویسندگان
چکیده
UNLABELLED Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Compensatory liver regeneration is crucial for the final outcome of toxicant-induced injury. However, the molecular mechanisms underlying compensatory liver regeneration in mice after APAP-induced liver injury are not completely understood. This study aimed to investigate the role of dynamic and coordinated regulation of Kelch-like ECH-associated protein 1 (KEAP1)-nuclear factor erythroid 2-related factor 2 (NRF2)- antioxidant response element (ARE) and p53/p21 pathways in APAP injury-responsive liver regeneration. We found that mice exhibited massive hepatic toxicity during the first 12 hours after 400 mg/kg APAP treatment, but responsive liver recovery occurred beyond 24 hours as demonstrated by histopathological and biochemical assessments. The expression and nuclear accumulation of NRF2 was increased after APAP treatment. The expression of NAD(P)H quinone oxidoreductase 1, glutamate-cysteine ligase modifier subunit, and heme oxygenase-1 was inhibited during the first 24 hours and then induced to limit oxidative damage. The content of p53 and its downstream target p21 were significantly increased upon APAP exposure and subsequently decreased to normal levels at 48 hours. Furthermore, levels of cyclin D1, cyclin D-dependent kinase 4, proliferating cell nuclear antigen, and augmenter of liver regeneration at 48 hours were enhanced, suggesting initiation of hepatocyte proliferation and tissue repair. These results demonstrated that dynamic and coordinated regulation of KEAP1-NRF2-ARE and p53/p21 signaling pathways was associated with compensatory liver regeneration after APAP-induced acute liver injury.
منابع مشابه
Dmd059394 1532..1539
Acetaminophen (APAP) overdose is the leading cause of druginduced liver injury. Compensatory liver regeneration is crucial for the final outcome of toxicant-induced injury. However, the molecular mechanisms underlying compensatory liver regeneration in mice after APAP-induced liver injury are not completely understood. This study aimed to investigate the role of dynamic and coordinated regulati...
متن کاملWuzhi tablet (Schisandra Sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways.
Schisandra sphenanthera is widely used as a tonic and restorative in many countries to enhance the function of liver and other organs. Wuzhi tablet (WZ) is a preparation of an ethanol extract of Schisandra sphenanthera. Our previous study demonstrated that WZ exerted a protective effect toward acetaminophen (APAP)-induced hepatotoxicity. However, the molecular mechanisms of this protection rema...
متن کاملDmd059535 1982..1990
Schisandra sphenanthera is widely used as a tonic and restorative in many countries to enhance the function of liver and other organs. Wuzhi tablet (WZ) is a preparation of an ethanol extract of Schisandra sphenanthera. Our previous study demonstrated that WZ exerted a protective effect toward acetaminophen (APAP)-induced hepatotoxicity. However, the molecular mechanisms of this protection rema...
متن کاملEffect of Resistance and Endurance Trainings on Nrf2/Keap1 Signaling Pathway in Testicular Tissue of Type 2 Diabetic Rats
Background and purpose: The antioxidant Nrf2/Keap1 pathway prevents cellular damages against oxidative stress and this pathway is disrupted following diabetes. The aim of this study was to investigate the effect of endurance and resistance training on antioxidant Nrf2/Keap1 pathway in testicular tissue of diabetic rats. Materials and methods: In this experimental research, 48 male Wistar rats ...
متن کاملMechanistic studies of the Nrf2-Keap1 signaling pathway.
Since eukaryotic cells constantly encounter various environmental insults, they have evolved defense mechanisms to cope with toxicant- and carcinogen-induced oxidative stress or electrophiles. One of the most important cellular defense mechanisms against oxidative stress or electrophiles is mediated by the transcription factor Nrf2. Under the basal condition, Nrf2-dependent transcription is rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2014